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in this paper, we have used Case's analysis of the aeutron transport
equation to obtain a new set of quadrature coefficients for the discrete-
ordinates method. We perform the transport calculations by this set of
uadratures, dependeant on the medium. We also use the orthogonality
refations in the discrete case to derive the full-range formulation of the
half-range problem. This solution can, indeed, bo profitably used in the
new discrete-ordinates method. € 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper, we consider the regular and singuiar solu-
tions of the monoenergetic neutron transport equation in
plane geometry. As it is weil known [1], the singular solu-
tions are in the form of Dirac-delta distributions and the
Cauchy principal value. Because of the singular nature of
cigenfunctions, the exact method of neutron transport
theory may be considered to yield only a formal solution
and is not effective numerically. The present work will
address an important natural guestion of how one can
systematically use information from the exact solution in
an approximate method. We have chosen to work with the
discrete-ordinates (S, ) method [ 2] because of its suitability
in practical transport compultations.

In the context of spherical harmonics, various attempts
I.3-7] have been made to improve the tranditional P, solu-
tions of the transport equation, The basic improvement was
achicved by the use of an exact asymptolic eigenvalue of the
transport cquation. The replacement of other transport
parameters by their exact values (such as the extrapolated
end-point and linear extrapolation fength) was derived in a
systematic manner through the change of boundary condi-
tions. Surprisingly, the corresponding improvement of the
discrete-ordinates method does not seem to have received
equal attention, 1t is natural to expect that the regular solu-
tions of the S, and P, methods will approach the distribu-
tional solutions of the transport equation in a suitable sense
as the order of approximation N tends to infinity. In fact,
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Davison [87] showed the convergence of the eigenvalues of
the P, equations to those of the exact theory. Apart from
this work of Davison, the relationship of the regular solu-
tions of the P, and S, methods with the exact solution of
the transport boundary value problem has recently been
established by Larsen [9].

We observe that the angular nodes in the Sy-approxima-
tion are the zeros of Legendre polynomials P,41). However,
the use of zeros of Py(u), which are solutions of a Sturm-
Liouville problem, may not be always optimal as the
Legendre polynomials do not form a natural basis in trans-
port theory calculations. Thus, we have used orthogonal
polynomial with respect to a weight fuhction other than
unity [10] and succeeded in improving the discrete-
ordinates caiculations in general. These orthogonal polyno- -
mials were generated by using an algorithm of Golub and
Welsch [11]. The weight function was derived by demand-
ing certain transport parameters ol the approximate scheme
be exact. We have, however, experienced some difficuities in
obtaining converged solution of the non-linear system of
equations involving the parameters of the weight function
for the case of a multiplying medium. We had to also deviate
slightly from requiring that one of the eigenvalues of the
discrete-ordinates equations be the exact asymptotic eigen-
value for highly absorbing cases to ensure positivity of
the weight function. In this paper, we employ a different
approach which will be described next. In most of our
numerical calculations, we observed that the present
approach performs better. However, it is (o be noted that
the former approach yields better results in some cases and
we believe that the use of the weight function in another
suitable form may improve the calculational results.

In the usual formulation of the Gauss—Legendre quad-
rature set, the angular nodes are the zeros of the Legendre
polynomials Py(¢) and the weights are obtained by
demanding the exact evaluation of the integrals {or polyno-
mials up to order 2N — 1. In our formulation, the weights
and nodes for the quadrature approximation are obtained
by applying two constraint equations to be discussed later,
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together with the usual equations for the Gauss—Legendre
set. Specifically, to obtain the N-point Gauss Legendre set,
we use the following 2N equations:

N

1
Z“‘_,-#j‘=jl#"du, n=024,.,2N-2 (1)

J=1
J=123 . N2 (2)
=123 ., N2 (3)

W,=Wa_ 0,
Hi= —Hy_ s,

In our case, the last two equations for obtaining the
Gauss-Legendre set (first equation with n=2N—4 and
n=2N—2) are discarded and replaced by the two con-
straint equations. We have also considered the replacement
of one constraint equation only. We observe that the
Gauss—Legendre set integrates polynomials exactly up lo
order {2N — 1). With the inclusion of the constraint equa-
tions, we expect that the transport-theoretic properties will
more than compensate for the loss of integrating propertics
by discarding equations from the usual set to obtain
Gauss-Legendre quadrature coefficients. At the same time,
we have the same computational advantage enjoyed by
the traditional discrete-ordinates within the framework of
coupled ordinary differential equations.

It now remains to derive the required constraint equa-
tions in a meaningful way. These can be derived from (i)
purely physical considerations, (ii) purely mathematical
relations derived from the half-range and full-range
orthogonality relations, and (iii) a suitable combination of
(i) and (ii). In the present work, we derive the constraint
equations in Section 2 from the physical considerations. We
also use the discrete-ordinates orthogonality relations to
derive constraint equations. This has been achieved by a
full-range type formulation for the discrete-ordinates
scheme. We obtain one of the constraints by the replace-
ment of the discrete-ordinates asymptotic eigenvalue by its
exact counterpart. By demanding this, we ensure that the
largest eigenvalue corresponding to the asymptotic flux
does not lie in the range of (—1, 1) in agreement with the
exact analysis. The second constraint will be derived by
demanding that either (a) exact leakage from a half-space
with constant source or (b} exact extrapolated end-point of
the standard source free Milne problem. For a nonmulti-
plying medium, either (a) or (b) can be used. However, (b)
is the only choice for a multiplying medium because of the
fact that the source-free Milne problem can be analytically
extended for this case. It is worthwhile to investigate if the
physical constraints can be interpreted from the analysis of
the transport equation, For this purpose, we also derive in
this section suitable orthogonality relations in the
framework of the S method. The identities satisfied by the
discrete case have exact counterparts from Case’s solution.
By the use of these relations, we will justify that one of the
constraints, namely, the requirement of exact asymptotic

eigenvalue in the discrete-ordinates scheme is necesstated by
rigorous analysis.

Section 3 of the paper provides the new quadrature nodes
and weights based on the present formulation. We then
compare the performance of the new weights and nodes
with the standard set for various problems involving
isotropic and anisotropic scattering. We note that improve-
ment of the S, method may also be attempted by imposing
only one constraint equation. We have done that with
partial success, as the numerical results in Section 3 will
indicate. Finally, we hope that the present approach will
find applications in neutron transport calculations in
geometries other than the slab geometry and in other areas
of mathematical physics. In Appendix A, we derive the
appropriate interface conditions for more realistic problems
involving interfaces. We also present numerical results on a
four region interface problem and a fuel moderator cell
problem. In Appendix B, the quadrature coefficients are
derived with constraints obtained from a full-range type
formulation. The numerical results on several benchmark
problems are also provided.

2. ANALYSIS

We consider the linear transport equation in plane
geometry:

ovr(x, 1
Wy e Koo wes ) dr, @

where (x, u) is the angular flux in direction u at position
x and ¢ is the number of secondaries per primary. Here, we
consider isotropic scattering such that K{x, u, u')=1. We
first summarize the exact analysis of the transport equation
as our analysis of the discrete-ordinates equation is similar
in many respects.

By application of the ansatz 1]

Wi, p)=e" (v, u)

to the homogeneous equation (4} with the normalization
1Py, 1) du =1, the following eigenvalue equation for

@(v, u) is obtained:
(v 1) By, ) = cvf2.
The solution is

cy

¢y p)==

1
P;r_—;-f-ﬁ.(v}é(v—,u)

with the eigenvalue spectrum consisting of a continuum
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—1<v<1 and a discrete spectrum =+ v, with the eigen-
functions
#t v, 1) = + 20— #(=1,1)
_V(),# - 4 2 ivo"#, Vo ] ]
where
Do Yot _, (5)
2 Twg—1 7
Here, P denotes the principal value and A(v)=
1 —cvtanh~'v. The Cauchy principle value prescription is

chosen to evaluate the integral in the following form:

1 v
4l
i1 V=

The solution of (4) is given by

v—4
dit' = lim U - dy’ +
i s-0|J_1 v—u

Y(x, p)=ap., e_x/v0¢(vo’ a)+ag_ f-’x'lvofﬁ( — Vg, 1)
+j1 A(v) e "g(v, 1) dv (6)
and
Yix, p)=ay, e vy, 1)

+j (v) e=*"g(v, ) dv (7)
for the fuil-range and half-range cases, respectively. The

coefficients g5, and A(v) are obtained from boundary
conditions. The corresponding orthogonality relations are

[ ubto. ) 40, ) du=0,

v#EY (8)

and,

[ W0 st ot mdu=0,  vav. @)

In Eq. (8} v, v can be either +v, or any value in (—1, 1),
whereas v, v/, corresponding to (9), will take either v, or any
value in (0, 1). The weight function W(g) in the half-range
has been found for the neutron transport theory by the
method of Case [1]. Analogous orthogonality rclations
are derived in the present investigation for the discrete-
ordinates method. As in the case of distributional solutions
[17, these orthogonality relations are expected to be useful
to construct suitable approximate methods.

2.1. Discrete-Ordinates Equations

We consider the discrete-ordinates equations derived
directly from (4) by using a quadrature formula to
approximate the integral. Thus, we obtain

dsb (x)
Bi

— rix )—E 2 W (x), i=1,2,.. N, (10}

i=1

where, ¢, (x)=(x, p;) and pu;, w,; are the quadrature
weights and points, As usual, we impose the following
constraints on the quadratures:

(i) the weights are positive and the quadrature sets
integrate constant functions (neutron conservation condi-
tion) exactly. That is,

the discrete-ordinates are distinct

(if)
el TR L o 2
(iii)

the quadrature sets are symmetric about g = (0:

i=1,2,.., N2
i=1,2, .., N/2.

Hi= —Uyi1—is

W, =Wy

Analogus to the procedure used in the exact method of
solving (4), we can solve (10) by expanding the solution in
terms of the eigenfunctions of the homogeneous solution
and obtaining expansion coefficients from the boundary
conditions. This procedure, originally considered by Chan-
drasckhar [12], was developed with the Gauss-Legendre
quadrature set. Sykes [13] proposed a double-Gauss for-
mula to determine the emergent angular distribution more
reliably. In this paper, we will, however, consider a different
quadrature set dependent on the medium necessitated by
the analysis and some physical constraints from transport
theory. Qur quadrature set will satisfy the constraints
mentioned above. We now investigate the analysis more
thoroughly to establish relations satisfied by the “discrete”
eigenfunctions and eigenvalues of the regular §, method
similar to the corresponding relations for exact singular
solutions.

Equation (10) can be written in the form

dy
o= AW (11)

where w = (¥, ¥,, .., W )" is a vector of length N and A4 is
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an N x N matrix. Through tedious calculation it is possible
to show that the eigenvalues of A satisfy

N2 N/2 N2
I1 ().2—;1—2)+ > (ﬂ;’ 11 (ﬂ.z—%))zo. (12)
J=1

j=1 j Hi i H;
i¥j

It is clear, therefore, that the eigenvalues of 4 are + 4, for
I=1,2,.,N/2 where, for convenience, Re(l))>0, for
i=1,2,..,N/2. 1t is also possible to show that if g,
1 < i< N, are distinct, then the eigenvalues are distinct. It is
assumed that y, # u, if i # j and therefore 4 has N distinct
eigenvalues. Thus, the solution of {11) has the form

N
Yix)= 3 dye (13)

=1

for j=1,2,.., N,

where 4,, 1 €/< N, are the N distinct eigenvalues of 4.
It will now be shown that (13) is similar in many respects
to (6), the solution of the continuous problem. By dividing
(12) by T, (A* = 1/u7) (it is straightforward to show that
4i# Yy, for every ! and j and hence this expression is
nonzero), one obtains the dispersion relation

W, 1
#2}2

(14)
C

We use the same form of eigenfunctions both in the
asymptotic and transient ranges in (14). We observe
that mathematically more accurate rational function
approximation of the singular eigenfunction may be used in
the transient range as in the seminal work of discretized
spectral approximation [14]. However, in this work, we
prefer to use the same form both in the asymptotic and
transient ranges for the computational advantage. Now,
substituting (13) into (10) results in

N
2 (=, A+ @) e
=

||M2

N -
Wy z 45.',(3_'“
I=1

for j=1,2,..

<
2,

,N. (15)

Since the right-hand side of (15) is the same for any j,
N -
>« — @A+ B ) e
i=1

— by Al i) €,

)
it

for 1<), m<N. {16)

Therefore, equating coefficients of e =%~ i

ing result is obtained:

n (16), the follow-

¢,(1 ¢, (1—

—Ap) = Arit,) forallj, m, 1 (17)

Therefore, since ¢,(1

b1=¢.',-(1_

—A;p4;} does not depend on j, let
A;). Then ¢, =b,/(1 — 4,4,) and by (13),

e~ A

N
gi(x) =3 1 for j=1,2,..,N. (18)
f=147"

L)

The similarity between (18) and (7) is clear. We refer the
readers to Ref. [9] which provides the relationship of the
exact distributional solutions with the regular solutions of
the discrete-ordinates equations.

Before continuing, some additional interesting and useful
relations are derived which are satisfied by the points,
weights, and eigenvalues. Equations (15) and (17) imply
that

N

b0 —ip)=3 ¥ wid, for I<ISN.  (19)
k=1

But from (17), @, =¢,(1— A, )/(1 — Ais). Substituting
this into {19) results in
¢ N

(1 _A'huj) ¢.;=§ Z Wk¢f,-(1 - }'!lu'j)/(l — Ate) (20)
k=1

and, hence,
N
2
it @)

F‘f

Note, that if the points and weights are symmetric then (21)
reduces to (14). Now consider

= l_ﬂi."t})(l+;mu}]
Yowifh, L

"/;{'m

= J

2 — Ay ,Z:l (1 =Ap) 142, u))

2 —wyfh i w, /4

=Y ot L ooy
P+ tmily 1‘1( fpj)( +"me;)

i=1

(22)

Thus, by equation the right-hand sides of (22), one obtains
that

g (LA + 1/Am) W,
(1 n'ruf)(l +}m“j)

Jj=1
1

=7 >

fr*l 1+lm‘ij

LY, 11)2
R -+ —-,
/1 ;l 1~ AI#} (2'.' A'm)c
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assuming that the points and weights are symmetric. Hence,

N

5 -

o =AM+ 2 1)

2
== for [, msuchthat i,# —241,, (23)
and substituting (23} into (22),
i Wik
S =)+ A
=0 for L msuchthatd,# —4,, 24)
In a similar manner one can obtain
N
W, 2
- =- for I#m, (23
2 T —d) < )
N oW,
Y o =0 for I#m. (26)

i=1 (1 _;Llﬂj)(l - Amﬂj)

The key relations satisfied by the points, weights, and
eigenvalues are {12), (16}, (21), (23}-(26). In particular,
(26} is the discrete version of the orthogonality relation
satisfied by the eigenfunctions ¢(v, p):

[ o) 60/, ) du=0,

Indeed (26) can be written as

N

¥ Wb B =0 for

i=1

I#m.
We also note that

[ 800, )60, =12 (1)

where @(vy, 1) and (v, 1) are exact eigenfunctions. Equa-
tion (25) is the discrete version of (27). The normalization
integral of the full-range problem in the discrete version is
given by %, (wyu; /(1 — 4;1,)%). By equating this to the
exact normalization condition, we may obtain a constraint
on quadrature weights and nodes.

The half-range orthogonality relations are relatively dif-
ficult to formulate because of their hali-range characteristic.
In the case of the exact neutron transport equation, the half-
range problem has been completely solved by the singular
eigenfunction method. The difficult step in the analysis is
determination of the half-range weight function, with
respect to which the eigenfunctions are orthogonal. In the

discrete case, we have imposed a suitable normalization
condition and used the half-range orthogonality relations to
derive conditions on the weights and nodes of the quad-
rature set. Because of the presence of complicated functions,
we have not been able to use these relations profitably.
Fortunately, Siewert’s work {15] on the F, method and,
then, its generalization by Sengupta [16] tell us that the
full-range weight function “u” will be sufficient to solve the
half-range problem. Actually, we do not need to use the
complicated half-range weight function “Wiu)” and the
corresponding orthogonality relations.

2.2, Quadrature Set

(a) Based on physical considerations. We proceed to
derive the two constraints which will be used to obtain the
new quadrature coefficients. A detailed discussion on this
aspect may be found in Refs. [6, 7]. We require that one of
the eigenvalues of the matrix 4 be 1/v,. By demanding
this, we ensure that the largest v, corresponding to the
asymptotic flux does not lie in the range (—1, 1) for any
order of approximation. Thus the first constraint follows
from (12} as

N2 wjv(z) 1

y % __

j=1 (VS—H_?) c (28)

The second constraint is derived by demanding either (a)

the exact leakage for the half-space constant source problem

or (b) the exact extrapolated end-point.of the standard

source-free Milne problem. The exact leakage for the
half-space constant source problem is [8]

Lonec=2 [~ I(0)], (9)
where
=5 (1+ e uele s GO)
0 —
and
g(c,,u)=|:(1—c,utanh_1y}z+¢]_l. (31)

The functions I{c) and g(c, 4} are tabulated in Ref. [17].
The approximate angular flux is

(x) "‘f b; S a (32)
H(x)= e T4 ——. ]
v S L= A, l—c¢
The boundary conditions are

¥, (0)=0, i=1,2,., Nf2 (33)
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The coefficients b, are computed by use of (32) and (33). The
leakage in the discrete-ordinates formulation is computed
from

N

LS.V = z

F=N2+1

Jujwj"[’j(o)’ (34)

The second constraint equation is now obtained by
demanding that the ieakage from (34) be equal to that given
by (29). Therefore,

N

-2

J=N/2+1

2
po, O == - Kol (35)

We now derive the constraint equation from the source-
free Milne problem. The exact solution of this problem is

Ylx, ) =do, e "o, (1) + "o _ (1)

[ awye g d, (36)
0

where
(37)

with z, defining the extrapolated endpoint. The discrete
solution to this problem is

N2 dj . c )
i Xl= = e—z»jx_*_'w_—eANfzx' 38
vil) fgl 1—d;u, 2(1 +;{N,‘2Hi) (38)

The coefficients d; in (38) are obtained by use of
$:(0)=0, i=1,2,.,N2 (39)

It is assumed that 4, is the smallest eigenvalue in (38). By
comparison of (38} with (36), it is readily observed that the
discrete formulation yields the exact extrapolated end-point
zp if

(40)

For nonmultiplying medium (¢ < 1), either (35} or (40) may
be used as the second constraint. We have chosen (35) for
¢ <1 which produced better numerical resuits, Since the
source-free Milne problem can be analytically extended for
¢> 1, (40) is, however, the only choice for the multiplying
medium.

We have considered the following non-linear system of
equations to obtain a new quadrature set dependent on the
medium:

(a) Egs. (1), with n=2N—2 case discarded, (2), (3),
and (28)

(b) Eqgs. (1), with n=2N—2 case discarded, (2), (3),
and (35)

(c) Egs. (1), with n=2N—2 and n=2N —4 cases dis-
carded, (2), (3), (28), and (35) (¢ < 1) or (40) (¢ >1).

The detailed numerical results will be presented in the next
section for the case (¢), which performs remarkably well for
a wide class of transport problems with both isotropic and
anisotropic scattering. Prior to this, we will briefly discuss
the cases (a) and (b) for N =4 only, in that section.

(b) Based on orthogonality relations. We believe that the
orthogonality relations in the discrete case can be suitably
used to obtain new quadrature sets. We already noted the
difficulty of using half-range weight function W{u) and the
corresponding orthogonality relations. In the next section,
we will show the basic steps of full-range formulation of the
half-range problem in the discrete-ordinates case.

The full-range solution of half-range problems is based
on a reduction to an equivalent full-range problem by
the superposition of two half-range problems. Since our
analysis is in the framework of discrete-ordinates, it seems
to be suited for numerical computations. Instead of deriving
the formulation from Plackzek lemma or the fundamental
orthogonality relations, we take advantage of an established
full-range formulation.

Consider the half-space problem

apix,
u%ﬂv(x,#)

¢ 1
=5j o ) i +a,

x>0 (41)

YO, uj=1—a, u>0

When a =0, this corresponds to the albedo problem and
{41) with a=1 represents the constant source problem. By
use of the relation

| [ -1 e a

=0 for £e(0, 1)U {vy}, (42)

Siewert and Benoist {157] obtained the singular integral
equation

2 1
EL HE Wy (0, —p) udp

=2—:+(1—a}[1—§log(1 +%)]

(43)
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Here, ¢(&, 1) are the regular or singular eigenfunctions
depending on the vatue of £. Thus by projecting Case’s half-
range solution onto a subspace of the full-range problem,
Siewert indirectly solved the transient integral problem
{14] involving singular eigenfunctions. By letting
Y0, —u)=3%%_,a,u® and evaluating (43) at selected
values of &, the F,, equations are obtained,

il 1
Z B.(&s) = —+(1~a)[1—§ﬁlog(l+§):|
]
for f=0,1,2,.., N, (44)
where
1
Ba(é)=€Ba—E(§)_;s o= 1,
with
1
Bo(é)———l—élog( é)' (45)
In this manner, ¥{0, —p) can be approximated. The F,

method has been successfully applied to many neutron
transport and radiative transfer problems.
The discrete-ordinates formulation of (41} is

dy,; (x) &

el b W - +

b T Wx) 221 Wil (x)+a o
v, (0)=1—a  1<j<N/2,

where we as usual assume that ;20 for 1< /< N/2 and
>¥_, wy=2. An analogous relation to (43) is now derived
that is satisfied by solutions of the discrete problem.

The solution of (46) tends to a/(1 —¢) as x — o0; ie,
y(x)—>a/(l1-c} as x— co. Additionally, (46) can be
written as

d;ya_

o S Av s, (47)

where 4 is the same matrix that was considered in (11).
Therefore, the solution of (47) has the form

Ny2

w,(x}—ZqBIJ ‘*“‘+1— for j=1,2,.,N,  (48)

assuming that Re(i,) >0 for /=1, 2, ..., N/2. Of course, all
the previous relations derived for the 4,, u;, and w; stiil hold

as well for the ¢,. In particular, ¢, = b,/(1
constant b, for each / and j. Hence,

— A;;) for some

Af2
Y Z e~ HT 4+

roy 1= Ay
for j=1,2,., N

a

‘r”j(x)*_-

1—c¢

(49)

Note that the constants b, can be obtained from the
boundary conditions y;(0)=1-—aforj=1,2, ., N/2.

Now a discrete form of (43) 1s derived. Multiplying both
sides of (49) by u,w;/(1 + A,,4;) and summing over j, on¢
obtains that

o a Wik
2z ("”(’" = c)(l T ﬂ.my,-)

Nj2 N

TR
— b it
bl

TS (U= AU+ A )

—Ax

(50)

However, assuming that 1, > 0, the right-hand side of (50)
is zero by (24). Hence,

il a
¥ (bo-75)dtum=0 61
i=1
is the discrete form of (42), where ¢ = b,/(1+ 4,1,).
Now let x =0in (51). Then,
(0)— —I =0 52
Z (vo =) 62
Since /,(0) =1 —a for 1 < j < N/2, one obtains
N
z l,fl( ) S
F=N2+ 1 ! 1+’1m 7
- (_a )( Wik ) - Wil
- ~ Y (1—a) (53
El (l—c L+ A4, 41 El 1+ 2,4,
However,
L f e 2 (e
oVt ann 2 A T LA An\ ¢
Hence, (53) becomes
TR
l,b } g
= NZ/;H J 1+Am,uj
—2a & Wl
= — - 54
e Wb i

which 1s a discrete form of the singular integral equation
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(43). In particular, suppose that a=1 and 1, = 1/v, for
some m. Then,

N L ¥ N

- Y o2 (55)
F=N2+1 Vot i ©

which is very similar to (43} with a=1 and ¢ = v,. So, from

the constant source Milne problem (a=1), the present

analysis imposes the requirement of exact asymptotic eigen-

value, namely, the constraint (28). We also observe that

{54), for a=0, reduces to (with 4,,=1/v;)

N W, Ny2 W,
Y0y — L —=-% — I (56)
jg;\%ﬂ ! T+ (v jgl 1+ (1/vg}
By comparison of (56) and its continuous analog (43) with
a =0, one may impose another constraint in the form

N2t 1
5 Mf—=1—v01n(1+~~).
j=1V0+ﬂj Vo

(57)

We have suitably used the constraints (28} and (57),
together with the usual equations for the Gauss—Legendre
set, to obtain new quadrature sets. Excellent numerical
results are obtained as expected, being a full-range type for-
mulation. In this paper, we have, however, provided resuits
for N=4 cnly in Appendix B as we intend to improve the
method further in a more general way. To this end, different
schemes [16] other than the F, equations may be
considered. In particular, we [18] have used the set of
orthogonal polynomials with respect to u in (0, 1) followed
by a reflection of the zeroes on the other half ( —1, 0}. This
makes the direction cosines independent of the medium,
The weights may then be obtained from the usual equations,
together with constraints.

3. NUMERICAL RESULTS AND CONCLUSIONS

In Table I, the quadrature points and weights of case (a)
(as described in the previous section} are given for N=4.
For N =2, it is straightiorward to show that w;=w,=1
and pu= —pu,=vg~/1—c It is interesting to note that
as ¢—0, Radau quadrature points and weights are
approached and, as ¢ — 1, Gaussian quadrature points and
weights are approached. Since (28) has only v2 appearing in
the equation, case (a) can also be applied for ¢ > 1, in which
case v, is purely imaginary. In all the calculations, discrete-
ordinates calculations are performed for spatial mesh
widths sufficiently small so that the error in the calculations
is dominated by the error due to the angular discretization.

We first consider the criticality problem. Slabs of widths
2.5786, 1.4732 and 1.0240 mean-free paths are considered

TABLE 1
Quadrature Weights and Nodes for Case (a)

4 L w2 Hy Ha
0.1 0.824918 0.175082 0.442697 0990197
02 0.812110 0.187890 0.435806 0976305
0.3 0.793264 0.206736 0.425595 0.957784
0.4 0.770410 0.2295%0 0413009 0937806
0.5 0.746664 0.253336 0.399586 0919335
0.6 0.723914 0.276086 0.386280 0903387
0.7 0.702978 0.297022 0373546 0.889946
0.8 0.684088 0315912 0.361564 0.878671
09 0667193 0332802 0.350381 0.869181
1.1 0.638730 0.361270 0.330318 0.854262
12 0626752 0.373248 0.321335 0.848338
1.3 0.616030 0.383970 0312973 0.843191
1.4 0.606398 0.393602 0305177 0.838686

for c=12, 1.4, and 1.6, respectively. The exact multiplica-
tion factor for each slab is 1.000. Multiplication factors for
the new quadrature set are 0,996, 0988, and 0.979 for
e¢=12, 1.4, and 1.6, respectively. The corresponding multi-
plication factors for the Gauss quadrature set are 0.994,
0.980, 0.960. Thus, the new quadrature set perform better
for the criticality problem,

In the next example, we consider a slab of five mean-free
paths with an entering flux distribution of W(0, u}=
1/{vy — ) on the left-hand side. This form of distribution is
approached as the distance from the source through a
homogeneous medium increases. Using discrete-ordinates
calculations with N = 4, leakages from the right-hand side of
the slab are calculated for ¢ =0.3. These values are 0.0103
and 0.0339 for the Gauss quadrature and the new quad-
rature sets. In comparing these leakages with the exact
leakage of 0.0338, it is clear that the new set performs much
better. This is, perhaps, because of the unique form of the
entering flux distribution.

Next, the leakages from the half-space of a constant
course problem are compared. We observe that the new
quadrature points and weights do not fare quite as well as
using the Gaussian set. This demonstrates that the use of
1/vo as one of the eigenvalues of the discrete-ordinates equa-
tions does not guarantee improvements in all cases and
additional constraint equations need to be applied.

In Table II we provide the weights and nodes for N=4
corresponding to case (b), where the only constraint equa-
tion is derived by demanding exact leakage from a half-
space with a constant source. In the Table 11T we compare
the leakages for a hali-space albedo problem (a=0) and
find that the new set results (S}) are very good. However,
we have observed that the requirement of the exact
asymptotic eigenvalue is an important one for many half-
space and criticality problems.

We now consider the important case (c¢). Here, two
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TABLE V
S¢(N) Nodes and Weights for ¢ < 1

¢ Wi Wy # iz ¢ # Wi M2 W2 Hs Ws
0.1 0529358 0.470642 0.228498 0.805932 0.10 0994388 0.096946 0684753 047644 0.18l644 0426614
02 0.530166 (0469834 0.229494 0.806251 020 0985658 0.105738 0678209 0471478 0.180278 0422782
03 0.531326 0468674 0.23091t 0.806708 030 0973165 0119710 0.668147 0462636 0.179330 0417654
04 0.533434 0466566 0.233460 0.807543 040 0959536 (1137454 0.654237 0453522 0.175927 0409024
05 0.534758 0465242 0.235041 0.808069 0.50 0947301 0155588 0639544 0444428 0172727 0399984
0.6 0.536102 0463898 0236630 0.808603 060 0937124 0172482 0624848 0437270 0.168504 0.390248
0.7 0.538653 0461348 0.239610 0.809622 070 0928910 0.187308 0611248 0431624 0.165553 0381066
08 0.541710 0.458290 0.243117 (.810849 080 0922232 0.200224 0.598451 0428086 0.161744 (.371688
09 0542602 0.457398 0.244129 0811209 090 0916787 0211298 0586816 0425914 0.158145 0362788
TABLE III constraint equations {28) and (35) (c< 1) or (40) (¢> 1}
Leakage for the Half-Space Albedo Problem have been used. The nodes and weights for §,, S, and S,
of case (¢) (which are denoted as S,{N), S¢(N), and 5;(N))
¢ St 54 Exact leakage for ¢< 1 are given in Tables IV, V, VI, respectively. The
ol 00t 113 0.012407 0.010850 nodes and weights for S_,,{N), Sq(N) for ¢ > 1 are given in
02 0023674 0.026330 0.023130 Tables VII, VIII, respectively. 1t should be noted that hand-
0.3 0.038072 0.042154 0.037225 calculated cigenvalues were used in the derivation of S,(N)
04 0.054907 0.060428 0.053650 for ¢ < 1, whereas a numerical subroutine from the IMSL
0.3 0.074887 0.081985 0.073250 math library was used for the calculation of the eigenvalues
0.6 0.099368 0.108159 0.097350 . h .. d s, N cal It
07 0.130854 0141331 0.128300 or t' e reI_nalmng quadrature sets. Numerical results ._are
08 0.174203 0.186437 0.170950 provided in Tables IX through XIX for the following
09 0.242603 0257213 0.233000 problems:
(1) Leakage for the half-space albedo problem.
TABLETIV - .
(2) Integrated scalar flux for an albedo problem in a
S4(N) Nodes and Weights for ¢ <1 slab.
(3) Integrated scalar flux for a constant source
4 £y Wy Ha Wi .
problem in a slab,
0.10 0330375 0.740076 0.985724 0.259924 (4) Scalar flux for an albedo problem.
020 0325227 0.725452 0966760 (.274548
030 0317574 0.704988 0.942809 0.295012 (5) Scalar flux for a constant source probiem.
0.40 0.308673 (0.681086 0.917460 0318914 6 Leak f ¢ bl . lab
050 0298424 0.655816 0.893746 0.344184 ‘ ( ) cakage lor a constant source problem in a sla
0.60 0288074 0631214 0872827 0.368786 with linear anisotropic scattering and nonentry of neutrons
0.70 0.278866 0.608724 1.854945 0391276 as the boundary condition on both the left and right sides.
0.80 0270240 0.588102 0.839637 0411898 7 Leak f bl . lab
090 0259211 0.566686 0.825466 0433314 . ( ) cakage for a constant source problem in a sla
with linear anisotropic scattering, nonentry of neutrons as
TABLE V1
S4(N) Nodes and Weights for c < 1
¢ H L Hz W, M3 w3 Ha Wy
0.10 0.997071 0.048594 0.835109 0.262756 0.498146 0.391364 0.125158 0.297284
0.20 0.991968 0.054094 0.830228 0.261342 0495092 (0.389264 0.124156 0.295298
030 0984077 0063764 0821779 0.258352 0.491005 0383776 0.124929 0.294108
040 0975599 0076162 0.810052 0256078 0.483508 0378312 0.122817 0.289448
0.50 0.968430 0.088310 0.797765 0.254876 0.475649 0371696 0.121449 0.285116
0.60 0962854 0.098900 0.785982 0.255558 0.467092 0.365714 0.119234 0.279828
070 0958628 0.107568 0.775527 0.257422 0459111 0.359814 0.117710 0275194
0.80 0.955364 0.114656 0.766210 0.260410 0450938 0.355122 0.115366 0.269812
0.90 0952816 0.120402 0.758137 0263852 0443267 0.351062 0.113198 0.264682
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TABLE VII
S4(N) Nodes and Weights for ¢ > 1

c 1y Wy H2 W3
110 0.807019 0.459138 0.251848 0.540862
1.20 0.796999 0.476446 0.242117 0.523554
1.30 0.786691 0495270 0.230515 0.504730
1.40 0.776626 0.514180 0218558 0485820
1.50 0.767001 0.532636 0.206806 (467364
1.60 0.757890 0.550406 0.195493 (.449594
1.70 0.749470 0.567036 0.185048 0432964
1.50 0.741510 0.583004 (.175040 0416996
1.90 0.734099 0.598066 0.165695 0.401934
TABLE VIII
Se(N) Nodes and Weights for c> 1

< [ W M2 w2 H3 W
I.10 0908875 (0.228128 0.56848% 0422570 0.154347 0.349302
120 0905896 0234728 0.560797 0421948 0.152694 0.343324
130 0903437 0.240274 0554136 0421646 0.151393 0.338080
140 0901259 0245290 0547713 0422224 (.149493  0.332488
1.50 0.899255 0249994 0541271 (423724 0.14681%9 0.326282
1.60 0897375 0254476 0.534781 0425982 0.143504 0.319542
1.70 0895698 0258514 0.528777 0428336 0.140349 0313148
1.80 0.894075 0262464 0.522639 0431298 0.136630 0.306236

the boundary condition on the left side, and reflecting
boundary condition on the right side.

(8) Leakage for an albedo problem in a slab with
linear anisotropic scattering and reflecting boundary
condition on the right side.

(9) Leakage for a constant source problem in a slab
with anisotropic scatlering, nonentry of neutrons as the
boundary condition on the left side, and reflecting boundary
condition on the right side,

(10) Leakage for an albedo problem in a slab with
anisotropic scattering and reflecting boundary condition on
the right side.

{11) Multiplication factor for a criticality problem with
critical thickness b..

All of the results for the above problems are compared
with the Gauss quadrature and the exact values. When the
exact results arc not available, 5;; results have been taken
as exact. The slab thickness in all the calculations is taken
as 20 mean-free paths. The leakage is calculated from (34).
The scalar flux is given by [, (x, u)du and the
integrated scalar flux is calculated from the formula
Jo I, ¥(x, ) du dx, where L is equal to 20 mean-free

190 0892572 0.266154

0156733 0434418

0.132899  0.299428

paths.

TABLE IX
Leakage for the Half-Space Albedo Problem

In problems
K(x, p, 'y =3+ pup'

(6)-(9), the
in  problems

10 and

scattering kernel
11,

¢ S(N) S, S6(A) S S¢(N) 84 Exact leakage
0.10 0.0115661 0.0124071 0.0109877 00116510 0.0108974 00113377 0.010850
0.20 0.0245593 0.0263301 00234453 00247684 0.0232181 00241255 0.023130
.30 00393260 00421535 0.0376645 00397297 0.0373955 00387396 0.037225
0.40 0.0564232 0.0604284 0.0542206 00570772 00538664 00557198 0053650
0.50 0.0765743 0.0819845 0.0739577 (0776296 0.0735283 00758823 0.073250
060 0.1011219 0.1081591 0.0981382 0.1027095 0.0976370 0.1005466 0.097350
0.70 0.1325400 0.1413313 0.1297183 0.1346761 0.1286126 0.1320680 0.128300
0.80 0.1756702 0.1864365 0.1718959 0.1784364 0.1712688 0.1753483 0.170950
0.90 0.2436655 02572127 02400296 0.2476838 02393398 0.2440739 0239000
TABLE X
Integrated Scalar Flux for an Albedo Problem in a Slab
¢ S«(N) 5, S(¥) 56 Sy(N) Sg S
0.10 11.38313 11.82113 11.38313 11.58633 11.38307 11.50033 11.39056
020 12.44780 1290123 1245725 1265723 12.44776 12.56870 1245690
030 13.76440 1423336 1376840 1397913 13.76837 1388788 13.77386
040 1544340 1592464 1544137 15.65895 1544136 15.56475 1544836
0.50 17.65553 18.15677 1765551 17.87808 17.65537 17.78060 17.66162
060 2074179 21.26709 20.74374 2097349 20.74368 20.87240 20.75064
0.70 2542651 2597333 25.53009 2566215 2542625 2555715 2543207
0.80 33.59562 3416811 33.59119 3383578 33.59141 33.72620 33.59667
050 5250842 53.53645 5292432 53.17741 §2.92370 5306272 5292695
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TABLE XI

Integrated Scalar Flux for a Constant Source Problem in a Slab

< Sa(N) S4 S6(N) Se Sg( N} Sy Saz
0.10 876,250 875.746 876.235 876.005 876.252 876.106 876.185
0.20 984437 983372 984459 984.176 984.437 984284 984.390
0.30 1123.191 1122.527 1123172 1122.891 1123.163 1122991 1123.123
.40 1307.575 1306.787 1307.599 1307.234 1307.593 1307.368 1307.549
0.50 1564.672 1563668 1564 638 1564224 1564674 1564386 1564 606
0.60 1948.124 1946811 1948.078 1947.541 1956.021 1947.789 1948.006
0.70 2581.809 2579982 2598.853 2580971 2581.763 2581.365 2581.641
0.80 3831.667 3828.736 3831603 3830412 3831.689 3830995 3831.291
0.50 7469030 7462.700 7468.870 7466.208 7468.734 7467.301 7467402
TABLE XIIa TABLE XIIIa

Scalar Flux for an Albedo Problem, ¢ =0.2 and ¢ =0.4

Scalar Flux for a Constant Source Problem, c =02 and ¢ =04

c=02 c=04 c=02 c=04
Position S, 54Ny Sx Sy 54N Sz Position Ss S4(N) 51 SN hy
1 L0557 1.0557 10557 11270 11270 11270 1 11803 11803 1.1803 14550 14550 14550
2 09527 09447 08954 10316 10229 09805 2 13692 13192  1.3807 1.6140 16284 1.699]
§ 07070 06848 06435 07979 07742 07376 5 16163 16439 14956 20034 20429 21040
10 04447 04177 04183 05345 0.5062  0.5056 10 19442 19778 19771 24426 24896 24906
15 02911 02686 0.2857 03694 03463 03605 15 21361 21642 21428 27177 2737562 27324
TABLE XIIb TABLE XIIIb

Scalar Flux for an Albedo Problem, ¢ == 0.6 and ¢=0.8

Scalar Flux for a Constant Source Problem, ¢ =0.6 and ¢ =0.8

c=06 c=08 c=06 c=08
Position S. SdNM Sy 5, S(M Sy, Position S, S{NM)  Si S: SJ4N)  Sn
1 1.2251  1.2251 {1.2251 1.3819 13819 13819 1 19371 19371 19371 30001 30901  3.0900
2 1.1405  1.1313 10973 13146 13066 12829 2 21488 21718 22565 34269 34670 3.5848
5 09262 09012 08715 1.1369 11147 1.0932 5 26844 27476 28210 43152 44260 4.5331
10 06686 06391 0.6382 09047 08778 08759 10 33284 34023 34042 54758 56107 56195
15 04937 04698 04810 0729 07072 0.7141 15 3.7656 38254 37971 63500 64635 64284
TABLE XIV
Leakage for a Constant Source Problem in-a Slab with Anisotropic Scattering and Nonentry of
Neutrons as the Boundary Condition on Both Left and Right Sides
c SN S, Ss(N) 5; Ss(N) S S3
0.10 0.551932 0.574550 0.552338 0.562613 0.552384 0.558270 0.552750
0.20 0.615846 0.640068 0.616694 0.627441 0.616787 0.622916 0.617305
030 1.696676 0722632 0.698187 ¢.709193 1.698321 1.704456 0.698685
040 0.802326 0829984 0.803959 0.815568 0.804129 0.810574 0.804603
0.50 0.945443 0.975450 0.947617 0.959825 0947812 0954511 0.948281
0.60 1.184133 1.184147 1.153893 1.166964 1.154108 1.161231 1.154653
0.70 1473440 1.509830 1476379 1450522 1476591 1484210 1477134
080 2050953 2092121 2053865 2069708 2054072 2062527 2054698
090 3391191 3.440495 3395425 3413518 3.395517 3.405003 3.396097




Leakage for a Constant Source Problem in a Slab with Anisotropic Scattering and Nonentry

ON DISCRETE-ORDINATES METHOD VIA CASE'S SOLUTION

TABLE XYV
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< SUN} Ss Se(N) Ss Sa(¥) S 83
0.10 0.551950 0.574556 0.552345 0.562619 3.552391 0.558276 0.552797
020 0615877 0.640080 0.616709 0.627454 0.616800 0.622930 0.617319
030 0.696732 0.722662 0698219 0.709224 0.698352 0.704487 0.698716
040 0.802442 0.830061 0.804039 0.815647 0.804207 0.810653 0.804682
0.5 (.945732 0.975677 0.947846 0.966054 (.948039 0.954739 0.948509
0.60 1.184910 1.184925 1.154663 1.167737 1.154877 1.162003 1.155422
0.70 1476776 1.513026 1.479522 1.493687 1.479733 1487364 1.480279
0.80 2068188 2109335 2070754 2086726 2070962 2079482 2071597
090 3.541750 3.593372 3.545581 31.564725 3.545666 3.555672 3.546287

TABLE XVI
Leakage for an Albedo Problem in a Slab with Anisotropic Scattering
and Reflecting Boundary Condition on the Right Side

< Sy} S Se(N) S Sa(N) 8% 832
0.10 0.003961 0004171 0003027 0003574 0002895 0.003296 0002859
0.20 0.008657 0.009206 0.006835 0.007967 0.006577 0.007399 0.006520
0.30 0014313 0.015408 0011751 0.013472 0.011389 0.012601 0.011273
040 0021358 0023234 0018138 0.020540 0.017683 0019347 0.017563
@.50 (4.030458 4.033432 G.026785 0028500 0026259 0.028367 0026114
.60 0.042862 .047300 0.038915 0.042829 0.038329 0.040931 0.038195
0.70 0061239 0067362 (.057051 0.061815 0.056423 0.059515 0.056273
0.80 0.091135 0099403 0086805 0.092569 0.086139 0.089815 0.086025
090 0.150341 0.161873 0.146402 0.153366 0.145698 0.150054 0.145625

TABLE XVII
Leakage for a Constant Source Problem in a Slab with Anisotropic Scattering and Nonentry of Neutrons as
the Boundary Condition on the Left Side, and Reflecting Boundary on the Right Side

< SN} S Se(N} Ss Ss(N} S 532
0.1 0.538861 0.562792 0.540037 0.550572 0.540020 0.546110 0.540398
0.2 0.585487 0612655 0.588052 0599374 0.588018 0.594577 0.588480
0.3 0.643038 0673877 0.647348 0.659306 0.647287 0.654106 0.647544
04 0.716408 0.751215 0.721956 0.735036 0.721855 0.729336 0.722199
0.5 0.812607 0852700 (820075 0.834439 0.819924 0.828100 0.820224
0.6 0993157 0993181 0955868 0972088 0.955658 0964889 0.956010
0.7 1.147261 1.204057 1.160014 1.178800 1.159703 1.170349 1.160002
08 1.494551 1.567729 1512212 1.535468 1.511753 1.524945 1512123
09 2299457 2415617 2.334346 2.367481 2.333514 2352399 2333905
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TABLE XVIlI

Leakage for an Albedo Problem in a Slab with Anisotropic Scattering
and Reflecting Boundary Condition on the Right Side

¢ S(N) Ss Se(N) Se Sg(N) 35 Sa
0.1 0.014164 0.014759 0.014103 0.014426 0.014027 0.014265 0.014018
0.2 0.029886 0.031150 0.029757 0.030441 0.029603 0.030103 0.029591
03 0.047564 0.049563 0.047358 0.048425 0.047134 0.047891 0.047092
04 0.067761 0.070550 0067386 0.068916 0.067092 (.068163 0.067051
0.5 0.091208 0.094933 0.090668 0.092717 0.090312 0.091715 0.090256
0.6 0.124012 0.124016 0.118427 0.121099 0.118013 0.11981¢ 0.117960
07 0.153892 0.160078 0.152899 0.156291 0.152428 0.154662 0.152357
08 0.199852 0.207762 0.198513 0.202833 0.197980 0.200779 0.197923
09 0268913 0.279739 0.267551 0273132 0.266943 0270496 0266900

K(x, g, &'y =sin*(up')/(1 —sin 2u/2p). Both these kernels
satisfy the normalizing condition |1, K(x, g, ¢’} du’ = 1.

In these test problems, we observe that the new
quadrature set performs significantiy better than the Gauss
quadrature set. In many problems, we find that the §,(N) is
comparable to §;, with the traditional Gauss-Legendre
quadrature. Also, the results compare favorably with those
of Refs. [6,7]. By replacing the last two equations for
n=2N—2 and n=2N—4 of (1) by the constraints ((28),
(35), or {(40)), the numerical results are significantly
improved as expected from transport-theoretic considera-
tions. However, it has not yet been justified from the
numerical analysis point of view.

Biickner [19] observes that, if the mth derivative of the
integrand is discontinuous, there is no advantage in using a
formula which is exact for polynomials of order higher than
m—1. This may partially explain why our nodes and
weights perform well in transport calculations. It is also
interesting to note that our approach yields significantly
improved results for anisotropic scattering cases.

Qur final conclusion is that the new quadrature set may

TABLE XIX

Multiplication Factor for a Criticality Problem
with Critical Thickness b,

¢ b, S4() 5, So(N) Ss

1.1 42266 09999955  (.9985735 09999996 09995073
12 2578 09999129 09948241  0.9999955  0.9983894
1.3 18755 09997404 09836890  1.0000320 09965505
14 14732 09994403 05804660 09999900 09937381
1.5 12101 09991258 09707364 09998697  0.9899453
1.6 10240 09988502 09600388 09997062 09852737
1.7 08851 09986270  0.9486828  0.9993250 09797643
1.8 07774 09984134 09369345 09988465 09735298
19 06919 09984993 09253452 0598512} 0.9670290

enable numerical transport calculations for some problems
with fewer points and weights than quadrature sets
currently used. However, it seems that the new method has
certain disadvantages in more realistic problems than the
ones considered in this paper. In Appendix A, we have con-
sidered the interface probiem with the medium dependent
quadraiure set. The interface condition was achieved by
equating the moments of the angular flux at the interface
and the overall performance of the new method is better.
The implementation of the method to other geometries and
multigroup transport would be relatively difficult. However,
it may be easier if the weights are only medium dependent.
We have started looking into these aspects and the conclu-
sion awaits further work. '

APPENDIX A

In this appendix, we consider the suitability of the new
quadrature sets for more realistic problems involving inter-
faces. With standard discrete-ordinates coefficients, the
discrete directions do not change at interfaces between
different media. Thus, the continuity of the angular flux
provides sufficient interface conditions to determine the
entering discrete angular fluxes at interfaces. However, the
new quadrature coefficients are dependent on the medium
and the discrete directions change abruptiy at interfaces
between different media. In the next section, we derive the
apprepriate interface conditions required to determine the
entering discrete angular fluxes. Finally, we present numeri-
cal results on a four region interface problem and a fuel
moderator cell problem for S, approximation. '

The present nodes and weights are dependent on the
medium and hence, interface conditions need to be for-
mulated in the discrete ordinate scheme to take advantage
of the new set of points. We consider a slab of thickness L
with an interface at x,,. Also, we assume that the constant ¢,
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which is the average number of secondaries produced per
collision, is different in each of these regions, namely, ¢, and
cysuch that 0<¢;<1,i=1, 2.

Using the quadrature corresponding to ¢, the neutron
angular flux ¥(x, p) for 0 < x < x,, can be computed by
using the standard method involving source iteration. To
proceed with the iteration further, we have to compute the
angular flux with a new direction of neutrons at x,. To
do this, we equate the first (N/2—1)=n—| moments of
angular flux at the interface in the quadrature formulation.
Thus, we obtain equations

N2 N2

Y Wi WlXo, i)=Y, Wil (xe, ),

i=1 i=1

k=0,1,2, .,0—1, (Al)

where w;, i, and w;, ji,, | <j< N, are weights and nodes
corresponding to ¢, and c,, respectively.

These moment equations ensure particle conservation as
well as continuity of the approximate total flux at material
interfaces. Hence, in a discrete-ordinates calculation, as the
interaction proceeds in the usual manner in the direction of
particle travel, the entering discrete angular fluxes at inter-
faces can readily be calculated by using {A1). The system of
linear equations (A1) can be written in detail as

1 1 w,
H B2 iy, Wj
I R W,
¥ (%9, f21)
l)‘” (x()a .az
’\[} (x(),ﬂn)

wl‘l’(x(): ﬂl)+ +wn!!l(x05 Jun)
Wit f(xg, )+ - F WP (Xo, 1) (A2)

wi T W (Xo, p) + < wo T (X, 1)

The first matrix on the left is known as Vandermonde
matrix. Since the nodes {4}, 1 < i< n, are distinct, it has an
inverse. Also, the second matrix on the left, being a diagonal
matrix with w,;>0, 1 <i/<n, has an inverse; hence the
solution to this system can be written as

581/107/1-6

W(xg, 1)
Yr(xo, fI5)
\[/(XU, .an)
W 1
beoel
1 _ _
_ = My Hy
= Wy .
L Latem
b ‘I”?—

Wi (xo, )+ o Fw, W (x0, 1)
Wi W(xe, )+ - +w, (X0, i)

wnﬂrlf_lw(x(h }ul)+ —|—w,,,u':,_1\[1(x0, lurz)
(A3)

The sweep to the left has a similar interface condition, where
the summation in (A1) is from N/2 + 1 to N.

We will report the transport calculations by the new
guadrature sets obtained by the approach (A) of this paper
and approach (B) of Ref [10]. We have, however,
experienced some difficultics in approach (B) in obtaining a
converged solution of the nonlinear system of equations
involving the parameters of the weight function for the case
of a multiplying medium. We had to also deviate shightly
from requiring that one of the eigenvalues of the discrete-
ordinates equations by the exact asymptotic eigenvalue for
highly absorbing cases to ensure positivity of the weight
function.

In this section, we present the numerical results corre-
sponding to N =4. For notational convenience, we call the
quadrature sets obtained by approaches (A) and (B) by set
1 and set 11, respectively. Correspondingly, we denote our
results by S,(N,;) and S,(N,). We now consider several”
problems involving interfaces to test the performance of the
new quadrature sets. We compare our results with those
of Gauss—Legendre set for N=4 and N = 16. Since exact
results are not available in most cases, we choose the
conventional 8 results with N=16 for the purpose of
comparison.

Our test problem is a four region source problem in a
nonmultiplying medium with both isotropic scattering
(K(x,u, #’y=3%) and linearly anisotropic scaltering
(K(x, g ' =3+ pp’). The scattering kernel K(x, p, u')
satisfies the normalization condition [' | K(x, p, p’') du= 1.
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[(1) (I (1) {Iv)
c=0.5 c=0.2 c=03 c=09
7 =000 g=100 | Q=000 Q=100
0.0 1.5 3.0 18.0 24.0
FIG. AL The model problem,

In Fig. Al, we provide the appropriate data for each of the
four regions with spatial dimensions indicated in mean-free
paths. Vacuum boundary conditions are imposed at both
the left and right boundaries of the slab of thickness L.

The source combination given here will be referred to as
Q0101 which means that the constant source of magnitude
unity is placed in the second and fourth regions and there
are no sources in first and third regions. We have also con-
sidered various other source combinations and these are
represented in a similar way. We compute the scalar flux
in different regions for different source combinations, with
both isotropic and linearly anisotropic scattering. The
results for a typical case with linear anisotropic scattering
and source combination Q0101 are shown graphically in
Fig. All for 5,(N), S,, and 5,4 cases. As noted, the difference
of our results with the usual Gauss quadrature results is
hardly seen on these figures. Therefore, we compare the
integrated flux

j: |t dud

for different sets with different source combinations.

8.0
L

SCALAR FLUX

4

1000

2.0
O ~g—

600 800
OISTANCE

200 100

FIG. AlL
Qo101

Scalar flux for anisotropic case with source combination

TABLE Al

Integrated Scalar Flux for the Isotropic Case

Integrated scalar flux

Source
Combinations Ss SNy S4(Ny) S

Qb1 157205 158198 1581.77 1580.18
Q1011 2486.59 2497.30 249545 2495.86
Ql110 1075.78 107597 1074.82 1075.27
Q1010 995.16 995.64 99425 99547
Q0100 80.63 80.33 80.57 79.80
Q0001 1491.42 1501.63 150120 150038
Q1111 256721 257763 2576.02 257565

In Tables Al and AIl we give the values of integrated
scalar flux for isotropic and anisotropic cases for the S, and
S, methods. Finally, we compute the leakage from the right
and left sides for both isotropic and anisotropic scattering
cases. These are

1
L= | #0(L. ) di

and

0
Liw={  mb(0.p)dp.
The right and left leakage values are given in Tables Alll(a)
and (b} and AIV(a) and (b) for isotropic and anisotropic
scattering cases, respectively.

We observe that the results on integrated scalar flux are,
in general, improved with the new quadrature coefficients.
Also, the set I performs better overall. However, there are a
few cases where the set II is superior. The improvement for
the anisotropic scattering case is more striking. The overall
results on the leakages from the left and right sides are also
improved with the new quadrature coefficients. However,
the leakage in some cases for the set I worsens slightly,
compared to that of conventional Gauss-quadrature. In a
few cases, set II performs better. We now consider the

TABLE All

Integrated Scalar Flux for the Anisotropic Case

Integrated scalar flux

Source
Combinations 5, SdND SdAN;) Sie

Qo101 1366.14 1380.70 138321 137693
Q1011 2291.95 2307.13 230740 2303.95
Q1119 108605 1086.07 108443 1085.58
Q1010 100593 1006.25 1004.3] 1006.30
Q0100 80.12 79.82 80.12 79.28
Q0001 1286.02 1300.88 1303.09 129765
Qll111 237207 2386.95 2387.52 2383.23
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TABLE AIlKz)
Leakage from the Right Side for Isotropic Scattering

Leakage from the right side

Source

Combinations 84 SAND Su(N2) Si6
Qo101 2486 2456 2458 2459
Q1011 2.507 2477 2459 2480
Q110 2.183%x 1072 2.147x 1072 2071 x10™2 2.157x 1072

TABLE Alll(b}
Leakage from the Left Side for Isotropic Scattering

Leakage from the left side

Source

Combinations Sy SuND SN, S
Qo101 9046 x 102 1061 x10~! 9982x 1072 9.122x 102
Quon 7292x 1077 7719x 107 7217x 107" 7040 107!
QL1110 8.197x 107" 8780 107" 8.115% 107" 7953 x 10"

TABLE AlV(a)
Leakage from the Right Side for Anisotropic Scattering

Leakage from the right side

Source

Combinations S, SAND SN2} Sie
Q0101 3.021 2978 2978 2984
Q1011 3.106 3.062 3.057 3.068
Q1110 B512x 1072 83211072 78761072 8393102

TABLE AIV(b)
Leakage from the Left Side for Anisotropic Scattering

Leakage from the left side

Source

Combinations S, SN Si(N3) S
Qo101 1243 %107 1425%10~" 1217x107" 1249 107!
Qlo11 7.657x 10~ 8.112%107" 7561 x10~" 7381 x10~!
Qil10 8900 x 10~ 9537x10" 8778 x 107" 863110

TABLE AV

Disadvantage Factor for Different Methods

Method Disadvantage factor
S, 228

SN 233

SdN2) 229
St 2.38

problem of evaluating the disadvantage factor for a fuel
moderator cell.

An infinite homogeneous array of 2w-wide fuel plates
separated by a moderator with a centerline spacing of W is
now considered. The disadvantage factor din such an array
is defined as the ratio of average flux in the moderator to the
average flux in the fuel, ie,

W —w)) [ §Tx) d
(w)Ts dx)dx

(A4)

where ¢(x) is the scalar flux for the fuel and $(x) is that for
the moderator. Using the lollowing data, we compare the
disadvantage factor for S,(N,) and S,{N,} with that for the
Gauss—Legendre set with ¥=4 and N = 16. The later two
sets will be represented by S, and S,,. We now consider the
following data:

¢, =0.55

£, =099
w=0.635
W=15.240.

The results, shown in Table AV, indicate that the disadvan-
tage factor is improved significantly by set I. Set Il also
performs slightly better.

The comparison of numerical results on the interface
problems reveals that the present approach yields results
improved over the ones of conventional Gauss quadrature.
As for the comparison between set T and set 11, it is found
that set I performs better in many situations. The reason for
this is because, to guarantee the positivity of weight function
for low values of ¢, we had to replace v by 0.9v, and this
caused some inconsistencies in the numerical results. Also
the weight function in Ref. [107 is quite arbitrary as the
full-range weight function is the simple odd polynomial
“u” However, it appears worthwhile to consider the
weight function in approach (B) of the form W{u)=
(1 —ap® — Bu'y. The weight function in this proposed form
may make approach (B) a viable competing candidate with
(A). However, the calculation involving the determination
of weights and nodes will be tedius. The half-range and full-
range orthogonality relations may also be suitably used
to derive appropriate constraint equations for obtaining
different quadrature sets. We are presently studying the
convergence analysis of the new discrete-ordinates method
for interface problems.

APPENDIX B

In this appendix, we will describe how the constraints
{28) and {57) may be profitably used in transport calcula-
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TABLE BI

Quadrature Weights and Nodes

GANGULY ET AL.

TABLE BIIl
Disadvantage Factor for Different Methods

¢ W W, H Ha Method Disadvantage factor

0.1 0.7282 0.2717 0.3092 0.9851 A 228

0.2 0.7124 0.2876 0.3028 0.9654 Sr 236

0.3 0.6906 0.3094 0.2941 0.9405 Sie 238

0.4 0.6652 0.3348 0.2837 09141

0.5 0.6388 0.3612 0.2730 0.8894

0.6 0.6132 0.3868 0.2626 0.8675

g-; g-gg?; g-j;gg g-iiig g-gggf Table BI gives the weights and nodes for different values
P 0.5470 04530 02351 0.8179 of c. We now present our results in Tables BII(a) and BII(b)

tions. We consider the case N=4.
ficients are obtained from

N

i=1

L owip'= r_l " dy,

Wi=Wn_i¢1s

= —Hn_i+1s

together with (28) and (57).

Leakage for the Half-Space Albedo Problem

TABLE Bll{a)

The quadrature coef-

n=~0,2,

i=1,2,
i=1,2,

c Sa Sy Exact leakage
0.1 0.0124 0.0112 0.0109
0.2 0.0263 0.0237 0.0231
0.3 0.0421 0.0380 0.0372
04 0.0604 0.0545 0.0537
0.5 0.0820 0.0741 0.0733
0.6 0.1082 0.0981 0.0974
0.7 0.1413 0.1288 0.1283
0.8 0,1864 0.1714 0.1710
09 0.2572 0.2392 0.2390
TABLE BIk(b)
Leakage for Constant Source Half-Space Problem
¢ S, SF Exact leakage
0.1 0.5654 0.5351 0.5435
0.2 0.6187 0.5870 0.5957
0.3 0.6844 0.6516 0.6608
04 0.7681 0.7338 0.7436
0.5 0.8786 0.8431 0.8528
0.6 1.0327 0.9961 1.0047
0.7 1.2664 12281 1.2389
0.8 1.6741 1.6331 1.6459
0.9 2.6401 2.5794 26103

on leakage for a halif-space albedo and constant source
problems. The improved results are denoted by S$ and the
conventional results by 5,., The numerical calculations
reveal that the inclusion of (28) and {57) in the derivation
of the quadrature set does improve the resuits for several
benchmark problems. The results compare favorably with
the F,, method, considering the numerical advantage of the
discrete-ordinates scheme.

Finally, we test the new quadrature set on a more realistic
problem involving interface. We consider an infinite
homogeneous array of 2w-wide fuel plates separated by a
moderator with a centerline spacing of W. The following
data—c, =0.55, ¢,=099, w=0.635, and W=1524—are
used to calculate the fuel-moderator disadvantage factor.
Table BIII shows the disadvantage factor is improved by
employing (28) and (57).
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